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We analyze a scheme, originally suggested by Smoluchowski, by which a 
diffusion coefficient D can be estimated by measuring the number of 
particles occupying a fixed region of a surface at various times. An expres- 
sion is derived relating the variance of the estimated value /) to several 
experimental parameters. This expression is evaluated numerically to deter- 
mine how statistical uncertainty depends on adjustable variables. Particular 
attention is given to experiments involving locomotion of migrating 
leukocytes. 
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1. I N T R O D U C T I O N  

During the last sixty years there have been several applications of a counting 
scheme now known as number fluctuation spectroscopy (NFS). In this tech- 
nique the fluctuating number of particles in a fixed region of space is deter- 
mined as a function of time, and kinetic parameters then are derived from 
tile statistical properties of the resultant stochastic signal. An early application 
of this method was the measurement of  diffusion coefficients of  colloidal 
particles, (1'2~ based on a theoretical analysis due to Smoluchowski, ~3) which 
has been summarized in reviews by Chandrasekhar (~) and Kac. (5~ Related 
schemes recently have been used to measure diffusion coefficients and reaction 
rates of macromolecules by fluorescence correlation spectroscopy (6,7~ and to 
obtain swimming speeds of flagellated bacteria by analysis of fluctuating 
scattered light. <a,9~ The technique has also been used to estimate mobility 
parameters of migrating white blood cells.(1~ 

Because of  the wide applicability of NFS, it is of interest to design such 
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experiments so as to minimize the sampling error, i.e., the error due to having 
only statistical estimates rather than exact knowledge of the relevant statistical 
functions. Similar analyses have been given by Jakeman et  al. ,  m~ DeGiorgio 
and Lastovka, (12~ Saleh and Cardoso, Cla~ and Koppel, (14~ among others, for a 
variety of experiments involving autocorrelations in photon counting experi- 
ments and fluorescence correlation spectroscopy. In the present paper we 
consider the design of such autocorrelation experiments in two dimensions, 
with the specific object of designing experiments to measure leukocyte 
motility in terms of correlation functions. There are a number of experiments 
showing that leukocyte migration on a surface, in the absence of chemo- 
attractants, can be characterized as a diffusion-like process.(~ 5~ Experiments 
by Nossal and Chang (1~ on leukocyte locomotion used time-lapse cinemicrog- 
raphy to record the number of cells in a fixed area at different times. An 
analysis following that of Smoluchowski aa~ was used to estimate an average 
diffusion constant (or mobility coefficient)/3 from calculated autocorrelation 
functions. 

Several parameters need to be set in such an experiment. The following 
are of interest: (1) size of the viewing area; (2) cell population density or, 
equivalently, expected number of cells in the viewing area; (3) number of 
observations; (4) time interval between successive observations; and (5) 
number of points used in curve fitting the autocorrelation function. Addi- 
tionally, one must take into account that biological parameters change with 
time, effectively limiting the maximum duration of the experiment. This 
contrasts with correlation experiments in physics that have no such limitations. 

Let b be the estimate of D, and let var(D) be the variance of that 
estimate. We will study the behavior of 

~2 = var(/3)/D 2 (1) 

as a function of the parameters enumerated above. In Section 2 we derive an 
expression for var(/3) on the assumption that the est imate/3 is made by a 
linearized least squares fit to the theoretical autocorrelation function. Section 
3 contains numerical computations based on the theory in Section 2. Several 
details of the analysis are presented in appendices. 

2. T H E O R Y  

We assume that noninteracting particles move as random walkers in two 
dimensions in an isotropic, infinite medium, i.e., one for which edge effects 
can be neglected. The basic idea of NFS  is to choose a region ~ and to 
count the number o f  particles in ~ at times r, 2~-, 3r ..... These numbers, 
denoted by n~ = n(i~-), are assumed to be measured exactly, and form a 
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stochastic process. The scheme suggested by Smoluchowski starts from the 
observation that the theoretical autocorrelation function R(t )  satisfies 

R(t )  =- (n(t)n(O)) - (n )  ~ = ( n ) Q ( t )  (2) 

where Q(t) is the conditional probability that a particle in f2 at t = 0 is in 
f2 at time t, and (n)  is the expected number of particles in f2 at any time. 
In the present case we choose f2 to be a square of side X. Under the assump- 
tions of diffusive motion, the transition probability density can be written 

P(r2, tIrl ,  O) = (4rrDt) -~ exp[(1/4Dt)lr2 - r~l 2] (3) 

and Q(t) can be expressed in terms of  the dimensionless variable z = 
X/ (4Dt )  1/2 as 

Q(t) = (1/X 2) j t P(r2, tire, 0) dgrl d2r2 
i #  

= {erfz + ( 1 ] z V ~ ) [ e x p ( - z  2) - 1]} 2 (4) 

where e r f z  - (2/zr 1/2) fo exp( -u2)du .  A graph of Q plotted as a function of 

z-1 is shown in Fig. 1. 
Observations of the Smoluchowski process cannot furnish values of Q, 

but only estimates of that function. Nossa] and Chang (~~ fit their data to 
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Fig. 1. The prol~ability Q(t) as defined in Eq. (4), plotted as a function of the dimension- 
less variable (4Dt/X2)llL 
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the linear part of the estimated Q, that is, to the early part of the curve 
in Fig. 1. Alternatively, one can use a nonlinear least squares technique to 
fit a larger range in z, presumably leading to a more accurate estimate of D. 
However, the problem of optimizing design parameters has not yet been 
considered. 

Our method for calculating var(b) starts from a linearized least squares 
function whose minimization yields an expression for D. We point out that 
it might be appropriate to start by minimizing a quadratic form derived from 
the maximum likelihood formalism, ~13~ but the resulting computations 
become extremely complicated with no assurance that the inherent Gaussian 
approximation is applicable. We start with the simpler problem of determining 
13 by minimizing the quadratic form 

M 

f ( / 3 )  = ~ [ 0 5 -  Q(i , /3)] 2 (5) 
i = l  

in which ()~ is the experimental estimate of Q(ir), Q~ - Q(i , /3)  is the theo- 
retical form of Eq. (4) with t = i% and M is the number of points to be used 
for the curve fit. The parameter b is therefore the solution to 

M ~Q~ ~=~ 
[Q(i, D) - 0i] ~ = 0 (6) 

5 = 1  

Let us denote the residuals by 3D and 3Q~, i.e., 

3D = D - f),  3Q, = Q(i, D) - 05 (7) 

and make the further assumption that the experiment is sufficiently accurate 
that only first-order terms in the 8Q, need be retained. This leads to the 
approximation 

OQ~ 8Q~ + higher order terms (8) ~D = -  ~ \ ~ D !  
t = 1  i 

and allows us to write ~2 [Eq. (1)] as 

(~=~ C2Q,)2 

where C: is defined by 

Cj = (1/y)(j/rr)~/Z[exp(-y2/j) - 1] (10) 

Notice that the cross-terms (3Q~ 3Qj} must be retained since we are not 
dealing with measurement error, which usually is assumed to be uncorrelated. 
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In order to use the result in Eq. (9), we must specify the form of the 0,  
and calculate the covariances (SQ~ 8Qj>. If  we define the estimators 

ft = .~ n, , G y = n~n~ + s (11) 
i = 1  N - J ~ = l  

then an obvious estimator for Q, is 

0, = (G, - fi2)/fi (12) 

The analysis of c 2 that results from using this nonlinear estimator is extremely 
complicated. To simplify the analysis, we will use a linear approximation 
adopted by Koppel. (14> The approximation is valid, as we will see, in the limit 
of large N. A derivation of the linearized estimator, which we denote by 
4,, is as follows: Write l/ = (n> + 8n and substitute this into Eq. (12), 
keeping terms that are first order in 8n. This leads to 

1 
Q~ -~-~ {[G, - (n>2][1-  -?-n)] - 2(n> Sn } 

,{ } = (n> ((~' - (n>2) 2 - ~ 5  - 2(n> 8n + 2(n> 2 (13) 

We justify the neglect of second-order terms by noticing that (n> = O(1), 
(Sn> = 0, and (8n2> = O(ln N/N). The order of (8n2> has been estimated 
by noting 

1 N 
(8n2> = N-~ ,--~fl Z ( n , -  ( n > ) ( n , -  <n>) 

.4=1 

=~-~  Na 2 + (n> ~ ( N - j ) Q j  (14) 
j = l  

where o 2 = (n> 2 - (n> 2 and Qr is given by Eq. (4). The logarithmic depen- 
dence arises from the fact that Qr varies a s j  -1 for large values of j .  A second 
step in the derivation of 4~ involves replacing the term 2 - fz/(n> by 1. If  
one writes 

2 -- ft/(n> = 1 + fi (15) 

it then follows that (/3> = 0, (/3 2> = (~n2>/(n>, so that setting/3 = 0 in Eq. 
(15) involves an error that is comparable to that used in deriving Eq. (13). 
When such an approximation is made we find 

4, = (n>-~( (~, - 2h(n) + (n> 2) (16) 

from which it follows that (q~> = Q, = Q(ir). Note that although Eq. (l 5) 
is used in the error analysis, the Q~ defined by Eq. (12) should be used for 
the actual data reduction. 
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The first term in Eq. 
tions since 

<d Oj> 

and the second term 

These results allow us to approximate <3Q~ 3Qj> by 

(3Q~ 3Qj) z (t],Os) - Q~Qj 
= (1/<n)2)<(~,(~j) - (2/<n))<fi((~, + C~.)) 

+ 4<h2) - <n) 2 + <n)(Q, + Qj) - Q, Qj (17) 

(17) requires evaluation of four-time correlation func- 

N - i  N - J  1 
(n,n,+tn,n.+j) (18) (N-  i ) (S-  j) 8 = 1  

requires evaluation of three-time correlation functions. 
Expressions for such quantities are derived in Appendix A. After performing 
the requisite algebra we then find that (SQm ~Q,) has the form 

8 

<3Q" 3Q') = N-~ E f (m,  l)<n) '-2, / >1 m (19) 
t = l  

where explicit expressions for the coefficientsf(m, l) are given in Appendix B 
[Eqs. (B6)-(B9)]. As seen next, this simple dependence upon (n)  enables us 
to obtain an analytic expression for the optimal number of particle to be 
used for a given set of experimental conditions. Consequently, it greatly 
facilitates numerical analysis of how the uncertainty in /5 depends upon 
experimental parameters. 

3. RESULTS A N D  D I S C U S S I O N  

We now use Eqs. (9) and (19) to explore how uncertainty in the estimated 
D is influenced by various experimental parameters. The uncertainty ~2 is a 
function of five variables that can be set by the experimenter. These are: 
(1) X, the size of the square; (2) ~-, the interval between successive measure- 
ments of n(t); (3) M, the number of points used in the least squares evaluation 
of /3; (4) <n), the expected number of particles in the viewing area, or 
equivalently, the particle density; and (5) N, the total number of measure- 
ments. 

In the present calculation we assume known an initial estimate of D. 
This type of assumption is customary in the statistical literature on design of 
experiments, (16) but other approaches taking into account an initial uncertainty 
are also possible. (17) Our procedure is reasonable as long as  e 2 is a slowly 
varying function of D. 

3.1. General  C o m m e n t s  

We have seen that X, r, and D always appear together in the dimension- 
less form y = (X2/4D'c) 112. The root-mean-square distance moved by a 
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particle in an interval of  time r is (4Dr) 1/2, so that y is the ratio of  the size of  
the viewing field to a length representative of  the average distance a particle 
migrates in a fundamental time unit. Intuitively, we might expect y to be 
on the order of  unity for the number fluctuation experiment to be effective. 
In a recent experimental study of  leukocyte locomotion, Nossal and Chang ao) 
found a mobility of  7.5 x 10 -a cm2/sec, having empirically chosen a square 
viewing field of  side 0.3 mm and having counted cells 180 successive times at 
intervals of  150 sec. This corresponds to a value o f y  ~ 4.5. 

The optimum choice for (n), i.e., that which minimizes the variance in 
D, can be determined analytically. From Eqs. (9) and (19) we obtain 

~2 = A~(n)-~ + A2 + A~(n) (20) 

where the A~ are independent of  (n)  and are explicitly defined in Appendix B. 
Minimizing e 2 with respect to (n)  yields for the optimal value (n)* = 

(A1/Aa) ~/2. This value was used to reduce the dimensionality of  the multi- 
variate parameter  space. Also, unless otherwise stated, M was adjusted to the 
value M* that minimizes e ~. 

3.2.  E f f e c t  o f  t h e  N u m b e r  of  O b s e r v a t i o n s / V  

The uncertainty in b can be reduced by increasing N, the total number 
of  observations. Two cases are of  interest, the first being that of  unconstrained 
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Fig. 2. Plot of E 2, the relative variance in/),  as a function of the inverse of the number 

of observation iV. Curves are drawn for several values of y. 
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Fig. 3. The relative variance in /} as a function of the number of observations N for 

several fixed-time experiments characterized by different values of N/y 2. 

N and % and the second being the time-constrained experiment in which Nz 
is held fixed. Since E 2 is a sampling variance, we might expect it to be roughly 
proportional to N -1. Although this dependence is not obvious from the 
detailed expression for E 2, it is, in fact, obeyed quite closely in the uncon- 
strained experiment. Such dependence is shown in Fig. 2. Therefore, by 
doubling the number of  observations, one can halve the uncertainty in /3. 
In the time-constrained experiment we fix N z  = T, which is equivalent to 
fixing N/y  2. In Fig. 3 we plot e2 as a function of N for several values of  N/y  2. 
In contrast to the situation for unconstrained experiments, e2 here tends 
toward a constant value characteristic of  continuous sampling. 

3.3.  E f f e c t  o f  t h e  Field D i m e n s i o n  X and S a m p l i n g  In te rva l  

The parameters X and ~- always appear in the combination X/'r 112, i.e., 
through the variable y. Hence a plot of  E 2 as a function of y shows the effect 
either of  increasing the size of the field or decreasing the interval between 
observations. Figure 4 gives such a plot for the value N = 100. To convert 
this to other values of N, one need only multiply the plotted curve by (100/N) 
as suggested by Fig. 2.  The position of the minimum is therefore invariant 
with respect to changes in N. 

As y increases, the box becomes so big or the experiment so short that 
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Fig. 4. The relative variance of /) as a function of the dimensionless variable y = 
(X2/4D.r) lj2. The bar " I "  at y = 3 denotes the range of E 2 that results from choosing M 
between 8 and 14, while the optimal choice for this value o fy  is M = 11. 

f luctuat ions o f  n(t)  tend to be rare. Conversely,  as y gets small,  ei ther f~ 
becomes so small  or  the t ime between observat ions  so long tha t  the number  
o f  par t ic les  present  in f2 at  any  two times m a y  be unrelated.  Thus,  for  very 
large or  very small  y, one expects E 2 to be large. The pos i t ion  o f  the min imum 
is quite close to y = 1.25. Since the value o f  D is ini t ial ly unknown,  the exact  
value o f  the o p t i m u m  y is no t  in teres t ing by  itself. However ,  i f  one avoids  
exper iments  for  which y < 0.5, the var ia t ion  o f  e2 with y is not  great.  I f  the 
ac tua l  value o f  y is anywhere  between 0.6 and  3.8, e will be less than  twice 
its m i n i m u m  value. The  a symmet ry  a b o u t  the min imum suggests tha t  i t  is 
least  damag ing  to choose  y too  large, tha t  is, i t  is bet ter  to have few corre la ted  
f luctuat ions ra ther  than  many  uncorre la ted  ones. 

The  vert ical  line on the curve in Fig. 4 is ano ther  ind ica t ion  o f  the 
insensi t ivi ty o f  the s t andard  er ror  e to the parameters .  The op t imal  number  
o f  po in ts  to use in the least  squares fit is 11 for  y = 3. The line shows the 
effect o f  choos ing  values o f  M f rom 8 to 14. 

F o r  the f ixed-t ime exper iment  we have set N r  --- 7". This is equivalent  
to fixing N / y  2 --- ~ = const .  In  Fig. 3 we have p lo t t ed  e2 vs. N for  several 
t ime constants .  F o r  N sufficiently large the curves o f  e2 reach a p la teau  
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value which is relatively insensitive to a. The plateau is reached when 
N>~ 8a. 

If  N is chosen too small, the value of E 2 is considerably larger than its 
plateau value. The sharp drop in 42 in the curves of Fig. 3 can be under- 
stood in terms of the curve for the unconstrained case (Fig. 4). Since we have 
fixed N/y 2 = a, an increase in N implies an increase in y. Hence, when y < 
y* ~ 1.25, an increase in N decreases 42 on two accounts, the increase in N 
and that in y. On the other hand, when y > y*, an increase in N decreases 
42 because of  the larger sample number, but there is a compensating increase 
in ~2 due to y. 

3.4. E f fec t  of  Choosing M 

The estimation of b involves a least squares fit to M values of the ~s 
[Eq. (4)]. If  M is too small, not enough values of Q(t) are sampled. If M is 
too large, values of Q(t) with large sampling errors will be used. A curve of 
M*, the optimal value of M for a given y, is plotted as a function of y in 
Fig. 5. Although M* is an integer, we have plotted a smooth curve, with the 
understanding that the integer closest to the curve is to be chosen. Additional 

20 
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10 

P I I { _i 

1 2 3 4 5 
y 

Fig. 5. Plot of M*, the optimal number of points to use in the least squares fit to Q(t), 
as a function 9f Y. The points are found to be independent of the choice of (n) or N. 
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calculations show that e2 is insensitive to variations in M. F o r  example, 
when y = 2 the optimizing value of M is M* = 6, but e2 is at most 107o 
greater than its minimum value for 3 ~< M ~< 12. 

3.5. Dependence of  (n>* on N and y 

At the beginning of this section we derived an equation for (n)*, the 
optimal number of particles to be found in the viewing area. This quantity is 
important when designing an experiment and we now indicate its dependence 
on other variables. 

We have observed from numerical calculations that (n)* increases with 
N according to 

(n)* = A ( y ) N  B~~ (21) 

where fl(y) is only weakly dependent upon y, decreasing from a value 
of 0.6 at y = 5 to a value 0.5 at y = l. The coefficient A(y)  is shown in 
Fig. 6. 

Figure 7 illustrates the dependence of (n)* on y for a fixed number of 
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Fig. 6. The coefficient A(y) as a function of  y [see Eq. (21)]. The number  of  points  in 
the least squares fit is cons is tent ly  taken as M = 4. 



12 S tephen  L. Brenner ,  Ralph J. Nossal,  and George  H. Weiss 

6 

5 - 

4 - 

3 

2 

1 

I 1 I I 

/. 
o I 1 I I k 

0 1 2 3 4 5 
y 

Fig. 7. The optimal number of particles in the viewing region <n>* shown as a function 
ofy. The solid line is calculated with M = 4 for all y. The circles indicate values of <n)* 
that follow upon setting M = M*. The number of observations here is taken to be 
N = 100 [see Eq. (21)]. 

observations. The solid line pertains to the case M = 4. We observe that the 
optimal number of particles increases with X. This is reasonable since particles 
near the boundaries of Q are the ones likely to contribute to the fluctuations 
in n(t). If  M is always adjusted to its optimal value for a given y, the behavior 
indicated by the circles in Fig. 7 results. Although (n)* varies with M, 
separate calculations show that the normalized variance ~2 is quite insensitive 
to the expected number of particles in the viewing region. For a typical case, 
when .(n)* = 2, variations in <n) between 0.5 and 8 lead to an increase in 
of no more than 20%. 

4. CONCLUDING REMARKS 

Suppose we were to consider a number fluctuation experiment where the 
total number of observations and the size of the viewing area were fixed 
for reasons related to instrumental design. In this case the mobility coefficient 
should be estimated, and t~ae interval between observations chosen so that 
y = 1.25-2. In contrast, for an experiment utilizing leukocytes--in which the 
total observation time T is fixed by the limited viability of the cells--one 
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might proceed as follows: (1) estimate D and select a field size X small 
enough that ~ = 4DT/X  2 >>. 10, yet large enough that X will be 10-20 times 
the average persistence length of the individual segments of the random walk 
executed by the cells in order to be reasonably certain that the cell motion 
may be viewed as a diffusion process; (2) determine the number of observa- 
tions N from the relationship N >i 8~ and, thus, the time between observa- 
tions ~ from the allowed total time T = Nr;  (3) estimate the cell density 
(n)  from Eq. (21), with A(y) given by the curve in Fig. 6. Ideally, (n)  
should be large enough so that one might vary the size of the viewing area 
about the optimal value and perform redundant analyses of the data in order 
to increase the reliability of the extracted mobility coefficient (see, e.g., Fig. 3 
of Ref. 10). 

Finally, it is to be noted that the preceding work concerns minimization 
of the uncertainty e2 when the kinetic parameter is extracted from a single 
number fluctuation experiment. If  r independent experiments are performed, 
the uncertainty in the mobility e2 is decreased to 1/rth its value for a single 
experiment. In the case of the leukocyte migration studies, the viewing area 
~2 is obtained by masking off a small portion of a time-lapse motion picture 
and several experiments effectively can be performed by marking off different 
areas of the same film record. These will not be truly independent experiments, 
but if the viewing regions are far apart, we expect the decrease in e2 to be 
roughly proportional to the inverse of the number of viewing areas studied. 

A P P E N D I X  A. EXPRESSIONS FOR M U L T I P L E - T I M E  
C O R R E L A T I O N  F U N C T I O N S  

Multiple-time correlation functions (n(tl)n(t2) ... n(tr)) are defined by 

(n(tl)n(t2) ... n(tT)) 

= ~ ~ "" ~ nln2...nrWT(nl, t l;n2, t2;...;nr, tr) (A1) 
nl=O n2~O ~r=O 

where Wr is the joint probability for finding nz particles in f2 at time tl, n2 
at t2, and so on. Kac (5> has derived a generating function from which it is 
possible to find the multiple-time correlation functions by differentiation. 

If  nl = n(q) and Q(t2 - tz) is designated Q2-z, then the first four cor- 
relation functions are 

(nan2) = (n)  2 + (n>Q2_l 
(nln2n3> = (n> 3 + (n>2(Q2-~ + Q3.~ + Q3-2) + <n>g~23 

<n~n2n3n4> = (n> 4 + (n>3(Q2_l + Q3-1 + Q~-~ + Q3-2 + Q4-2 (A2) 
+ O,-~) + (n}2(g~3 + g~2, + g~3, + g234 + Q2-~Q,-3 
+ Qs-IQ4-2 + Q,-~Q3-2) + (n)g~23~ 
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where we have used the ordering convention t~ < t2 < t3 < t4. The quantities 
g,j~ and g, jzl are defined as 

g~jk = (1/If21) f f f P(r2, t,; rs, tklr~, t3 dr~ dr2 dr3 

g, jk, = ( 1 / [ f ~ l ) f f f f  P(r2, tj; rs, tk; r4, 61r~, h)dr1 dr2 dra dr4 (A3) 

where the integrations are performed over f2. Approximations for evaluating 
these functions are discussed in Appendix C. 

APPENDIX B. DERIVATION OF EELS. (19)  A N D  (20} 

Substitution of Eq. (11) for (~ and ~ into Eq. (16) yields 

l N N 
<3Qm SQ') ~ (N<n>) --------~ ,~=1 r ~= [<n,n,+mnenr - (n> ~ 

+ 4(ninj><n> = - 2<n>(<nin~+mnj> + <nsnj+,n,>)] (B1) 

Equation (B1) can be simplified by considering separately the terms in the 
double sum where i = j, i < j, and i > j. We first note that there are N 
identical terms which arise where i = j. For i < j define k = j - i and for 
i > j define k = i - j and note that there are N - k identical terms for each 
possible k. Thus, Eq. (B1) reduces to 

<SQm3Q,> = N<n~ D + ~=~ 1 - - ~  Tk (B2) 

where 

D = <no2nmnz> - <n> 4 + 4<n>2<n2> - 2<n>(<no2nm> + <no2n,>) 

and 

(B3) 

Tk = <nonmnknk +,> + <nonznknk +m> 
- -  2(n>((nonmnz> + (nonknz+m>) 
-- 2<n>((nonln~> + <non~nk+~>) + 8(n>2<nonk> -- 2<n> 4 (B4) 

Inserting the expression given by Eqs. (A4)-(A5) into the latter, we find after 
some algebraic manipulations 

3 

N<SQm 8Q,> = ~ f ( m ,  l)<n> '-2, l >/m (B5) 
t = l  

where 
N - - 1  

f,(m, l) = d~ + ak~(k; O, l, rn) + ~ ak~(k; O, l, 2k - m) 
k = l  k = m + l  

l - m  Z 

+ ~ azy~(k; 1, m, l) + ~ aky,(k; O, m, l) 
k = l  k = l - m + l  

N - 1  

+ ~ ak~,,(k;O,m, 2k - l) (B6) 
k = l + l  
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and where a~ = (1 - k /N) .  Here 

oi1 = gomz, d2 = 2gomz + Ok-m + OmO' -- O~ -- 01, 
(B7) 

d3 = 1 - Q m -  Qz + Qz-m 

71(k; x, y, z) = go,~,~., 

72(k; x, y, z) = go,~+~-k.D + g~.~,. -- go.~,~ -- go.~.~+~ + Q~Q~ + Q~+~Q~-~ 
~,~(k; x, y, z) = Q~ - Q~,+~ - Q~_g + Q~ (B8) 

and 

�9 r =  ( k - l ) ( 1  - 2 x ) - m ( 1  + 2 x )  + 2 y  

( =  k + 1 ( l +  m -  z - y ) ,  ~ = � 8 9  m + z - y )  (B9) 

v =  ~ + x ( k  + m -  l), p =  k + y -  x (k  + m -  l) 

In Appendix C we show that the probabilities guk and gu~ [see Eq. (A6)] 
are approximated remarkably well by 

guk ~ Qj-~Qk-y,  guk, ~ Q j - , Q k - j Q l - k  (B10) 

Introducing these approximations into Eq. (B6) results in negligible loss of 
accuracy while providing large savings in computation time. 

Finally, when Eqs. (B5) and (B6) are used in conjunction with Eq. (9), 
we find that the relative variance o f / 3  can be expressed as E 2 = A~(n)  -~ + 
A2 + A3(n) ,  where the A~ are given as 

1 ~ = 1  Y.~=I CmClQlm/2O~/2f( rn, 1) 
A, = _~ (~=1 C2Q,)  2 (Bl l )  

A P P E N D I X  C. EXACT A N D  A P P R O X I M A T E  F O R M S  
FOR gu~ A N D  gukt 

The integrals guk and gu~ given in Eq. (A3) are to be evaluated when 
calculating ~2. It will be shown below that both multiple integrals can b e  
reduced to single integrals requiring numerical evaluation. Since many of 
these integrals are needed for a single calculation of ~2, we also produce an 
extremely simple approximation that has been used in our calculations, and 
show that errors in ~2 due to inaccuracy of the approximation are generally 
less than 1 70- 

We first consider the reduction of gukg to a simpler form. The function 
g, jk~ is given by 

abc ( 
guk~ = ~r3X 2 j .;; f e x p [ - a l r l  - r~l 2 - bJr~ - r3l = - clr3 - r~]2]drldr2dr~dr4 

( c 1 )  
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where a = (4Dtj,) -~, b = (4Dt~j) -1, c = (4Dhk) -1, and the integration is 
over f~ for each r,. The difficulty presented by Eq. (C1) is that the limits of 
integration are finite. To overcome this difficulty, we extend the limits of 
integration to infinity while multiplying the integrand by H(h)H(r2)H(ra)H(r4) 
where H(r)  = 1 for r in f~ and H(r)  = 0 for r outside f~. Then, an application 
of  Parseval's theorem leads to the form 

where 

lf f g~;~, = ~ _ ~"" I ' (o~0r(t~=)r( . ,o )p(t~4)  a to, 
i 

(c2) 

where 

2 o~ sin toRsi - -4--a 
1(7, a) ~r ~ to ~ ) R  exp dto (C5) 

This integral can also be put into a more convenient form by applying 
Parseval's theorem. One obtains 

I(~q, a) = ~ [exp(-au~)][sin ~/R + sin v(R - u)] du (C6) 

which can be substituted into the expression for g~sk~ in Eq. (C4). When this 
is done, the resulting integrals can be evaluated in a straightforward way and 
the final result can be expressed as 

g,jk~ = (gl + g2 + g3 + g,)2 (C7) 

To define the g's we require the dimensionless lengths 

= XV3, ~ = X q b ,  Y = Xv~-/, a = (as + ~,~)1~ (cs )  

r'(oa) - 2 sin toxR sin % R  (C3) 
"/r t.,o x t o y  

in which R = X/2. A change of variables to Vh = ~1 + t% and ~12 = toa + t% 
leads to the representation 

f~ g,j~, = (1/4~'2X 2) I(~x, a)I(%, a)I(~x, c)I(%, c) 
- c o  

x exp[-,/2/(4b)] &l (C4) 
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The g's can be written in terms of these quantities as 

g1(% fl, 7) = 1 erfc~ erf 7 Q~:2(fl) 

g2(% fl, ~') = (~'/2"vr~) erf ~ uQl/2(flu){exp[-~,2(1 - u) 2] - exp(-~,~u2)} du 

g3(% fl, ~') = g~(Y, fl, a) (C9) 

with 

I ( a , ~ , u ) = ( e x p [ - ( - ~ ) 2 ] } ( e r f - ~ - + e r f ~ - ~  

- e r f ( 3 - ? ) - e r f ( 3 - ~  ---~u) 

- ~'2u + erf - {exp [ ~ ( l + u ) ] 2 } ( e r f a 2  ~ 

- u) erf~,2(1 - u)) + (exp - [-~ (1 - u) ]2)(erf  c*2(1 , + , (c10) 

A similar derivation for g~jk yields 

g,j~ = �88 (erf~u) [erffiu + erffl(1 - u)] du (Cll)  

Since hundreds of these integrals may be needed in an evaluation of e2, 
it is clearly advantageous to have simple expressions for g~jg and g~m- Suitable 
approximations are suggested by examining the short-time behavior of the 
conditional probability density defined in Eq. (3); 

lira P(r2, t]r~, 0) = 3(r2 - rl) (C12) 
t~0 

The corresponding behavior of g~jk is found to be 

lim g~s~ = Qk-j, lim g~jk = QJ-~ (C13) 
t#~0 t/ct~ 0 

The approximation 

g~i~ .'~ Qy-,Qk-3 (Cl4) 

is exact in the limit of short times, and can be shown to be exact in the limit 
of long times. Similarly, one has in both these limits 

g, jk z Qj-~Qk-~Q,-~ (c15) 
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N 

Table I. 

Y 

Stephen L. Brenner, Ralph J. Nossal, and George H. Weiss 

Effect of Using Uncoupling Approximations for g~j-~ and gCj~ 

M* * n * (n )ap  . . . .  ( ) . . . . .  ~2(approx) ~2(exact) 

25 4 15 1.18 1.18 15.9302 15.9287 
25 1 4 1.19 1.19 6.1177 6.1192 
50 2 6 2.38 2.39 3.6108 3.6134 

100 1.25 4 3.16 3.16 1.2835 1.2839 
100 2 6 3.57 3.58 1.7901 1.7910 

i 

We have made  several test  calculat ions  o f  the approx ima t ions  of  Eqs. 
(C14) and  (C15) for  parameters  typical  o f  the leukocyte  mobi l i ty  experi-  
ments.  C1~ In  this case ~,/3, and  ~, are found  to be in the range 0.1-5.0. The  
approx ima t ions  of  Eqs. (C14) and  (C15) always underes t imate  values of  g~j~ 
and g~jkz. The wors t  agreement  in g~j~ is for  ~ = / 3  = 3.3, where the error  is 
5 .8%;  for  the g~j~= it is 12.9%, for  c~ = / 3  = ), = 3.5. The  app rox ima t ion  
cont inues to improve  as these pa ramete r s  increase.  

The  three- and  four- t ime probabi l i t i es  are no t  in themselves o f  great  
interest ,  bu t  their  combina t ion  in the ca lcula t ion  o f  e2 is. I t  appears  tha t  errors  
tend  to  cancel,  leading to results typified by  those in Table  I. In  no case are 
the  errors  in the app rox ima te  values o f  e2 or  o f  (n )*  as large as 1070. 

A C K N O W L E D G M E N T  

The au thors  would  like to t hank  Nancy  A. Crawford  for  her cheerful 
assistance in p repar ing  the manuscr ipt .  

R E F E R E N C E S  

1. T. Svedberg, Z. Phys. Chem. 77:147 (1911). 
2. A. Westgren, Ark. Mat. Ast. Fys. 11:8, 14 (1916). 
3. M. v. Smoluchowski, Wien. Ber. 123:2381 (1914). 
4. S. Chandrasekhar, Rev. Mod. Phys. 15:1 (1943). 
5. M. Kac in Probability and Related Topics in Physical Sciences (Interscience, New 

York), 1959, p. 132. 
6. D. Magde, E. L. Elson, and W. W. Webb, Biopolymers 13:29 (1974). 
7. E. L. Elson and W. W. Webb, Ann. Rev. Biophys. Bioeng. 4:311 (1975). 
8. D. W. Schaefer, Science 180:1293 (1973). 
9. D. W. Schaefer and B. J. Berne, Biophys. J. 15:785 (1975). 

10. R. Nossal and Y. T. Chang, J. Mechanochem. Cell Motil. 3:247 (1976). 
11. E. Jakeman, E. R. Pike, and S. Swain, J. Phys. A 4:517 (1971). 
12. V. Degiorgio and J. B. Lastovka, Phys. Rev. A 4:2033 (1971). 
13. B. E. A. Saleh and M. F. Cardoso, J. Phys. A 6:1897 (1973). 
14. D. E. Koppel, Phys. Rev. A 10:1938 (1974). 
15. M. H. Gail and C. W. Boone, Biophys. J. 10:980 (1970). 
16. M. J. Box, Biometrika 58:149 (1971). 
17. E. D. Becker, J. A. Ferretti, R. K. Gupta, and G. H. Weiss,J. Mag. Res. (to appear). 


